Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2305852, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38476050

RESUMO

Herein, a novel extracellular matrix (ECM) hydrogel is proposed fabricated solely from decellularized, human fibroblast-derived matrix (FDM) toward advanced wound healing. This FDM-gel is physically very stable and viscoelastic, while preserving the natural ECM diversity and various bioactive factors. Subcutaneously transplanted FDM-gel provided a permissive environment for innate immune cells infiltration. Compared to collagen hydrogel, excellent wound healing indications of FDM-gel treated in the full-thickness wounds are noticed, particularly hair follicle formation via highly upregulated ß-catenin. Sequential analysis of the regenerated wound tissues disclosed that FDM-gel significantly alleviated pro-inflammatory cytokine and promoted M2-like macrophages, along with significantly elevated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) level. A mechanistic study demonstrated that macrophages-FDM interactions through cell surface integrins α5ß1 and α1ß1 resulted in significant production of VEGF and bFGF, increased Akt phosphorylation, and upregulated matrix metalloproteinase-9 activity. Interestingly, blocking such interactions using specific inhibitors (ATN161 for α5ß1 and obtustatin for α1ß1) negatively affected those pro-healing growth factors secretion. Macrophages depletion animal model significantly attenuated the healing effect of FDM-gel. This study demonstrates that the FDM-gel is an excellent immunomodulatory material that is permissive for host cells infiltration, resorbable with time, and interactive with macrophages, where it thus enables regenerative matrix remodeling toward a complete wound healing.

2.
Biochem Biophys Res Commun ; 699: 149561, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280307

RESUMO

In mouse B lymphocytes, an unidentified slow-activating voltage-dependent current resembling the characteristics of the Calhm family ion channel (ICalhm-L) was investigated. RT-PCR analysis revealed the presence of Calhm2 and 6 transcripts, with subsequent whole-cell patch-clamp studies indicating that the ICalhm-L is augmented by heat, alkaline pH, and low extracellular [Ca2+]. Overexpression of Calhm2, but not Calhm6, in N2A cells recapitulated ICalhm-L. Moreover, Calhm2 knockdown in Bal-17 cells abolished ICalhm-L. We firstly identify the voltage-dependent ion channel function of the Calhm2 in the mouse immune cells. ATP release assays in primary mouse B cells suggested a significant contribution of Calhm2 for purinergic signaling at physiological temperature.


Assuntos
Cálcio , Canais Iônicos , Camundongos , Animais , Cálcio/metabolismo , Transdução de Sinais , Homeostase
3.
Biomater Res ; 27(1): 107, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904231

RESUMO

BACKGROUND: The secretomes of mesenchymal stem cells (MSCs) have great therapeutic potential and thereby their efficient delivery into the target site is of particular interest. Here, we propose a new strategy of hMSCs-derived secretomes delivery for advanced wound healing upon harnessing the working principle of extracellular matrix (ECM)-growth factors interaction in vivo. METHODS: We prepared an alginate hydrogel based wound patch, where it contains both human MSC-derived secretomes and ECM. The ECM was obtained from the decellularization of in vitro cultured human lung fibroblasts. The alginate solution was blended with ECM suspension, crosslinked, air-dried, then rehydrated with the secretomes contained in the concentrated conditioned media (CCM) as a highly saturated form of conditioned media (CM). We tested four different groups, with or without the ECM to investigate not only the role of ECM but the therapeutic effect of secretomes. RESULTS: The secretomes reserved many, diverse bioactive factors, such as VEGF, HGF, IGFBPs, IL-6, and IL-8. Alginate/ECM/CCM (AEC) patch could hold significantly larger amount of secretomes and release them longer than the other groups. Our AEC patch was the most effective in stimulating not only cell migration and proliferation but the collagen synthesis of dermal fibroblasts in vitro. Moreover, the AEC patch-treated full-thickness skin wounds disclosed significantly better wound healing indications: cell recruitment, neovascularization, epidermis thickness, keratinocyte migration, and mature collagen deposition, as assessed via histology (H&E, Herovici staining) and immunofluorescence, respectively. In particular, our AEC patch enabled a phenotype shift of myofibroblast into fibroblast over time and led to mature blood vessel formation at 14 day. CONCLUSIONS: We believe that ECM certainly contributed to generate a secretomes-enriched milieu via ECM-secretomes interactions and thereby such secretomes could be delivered more efficiently, exerting significant therapeutic impact either individually or collectively during wound healing process.

4.
Biomed Pharmacother ; 164: 114952, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295249

RESUMO

KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.


Assuntos
Canais de Potássio KCNQ , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Humanos , Ratos , Canais de Potássio KCNQ/genética , Morfolinos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Vasodilatadores/farmacologia
5.
Am J Physiol Cell Physiol ; 324(1): C98-C112, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409172

RESUMO

Calcium homeostasis modulator 1 (CALHM1), a newly discovered voltage-dependent nonselective ion channel, has drawn attention for its role in neuronal activity and taste sensation. Its sluggish voltage-dependent activation is facilitated by lowering extracellular Ca2+ concentration ([Ca2+]e). Here, we investigated the effects of extracellular and intracellular pH (pHe and pHi) on human CALHM1. When normalized to the amplitude of the CALHM1 current (ICALHM1) under whole cell patch clamp at symmetrical pH 7.4, ICALHM1 decreased at acidic pHe or pHi, whereas it sharply increased at alkaline pHe or pHi. The effects of pH were preserved in the inside-out configuration. The voltage dependence of ICALHM1 showed leftward and rightward shifts at alkaline and acidic pHe and pHi, respectively. Site-directed mutagenesis of the water-accessible charged residues of the pore and nearby domains revealed that E17, K229, E233, D257, and E259 are nonadditively responsible for facilitation at alkaline pHi. Identification of the pHe-sensing residue was not possible because mutation of putative residues impaired membrane expression, resulting in undetectable ICALHM1. Alkaline pHe-dependent facilitation appeared gradually with depolarization, suggesting that the sensitivity to pHe might be due to H+ diffusion through the open-state CALHM1. At pHe 6.2, decreased [Ca2+]e could not recover the inhibited ICALHM1 but further augmented the increased ICALHM1 at pHe 8.6, suggesting that unidentified common residues might contribute to the [Ca2+]e and acidic pHe. This study is the first, to our knowledge, to demonstrate the remarkable pH sensitivity of CALHM1, which might contribute to the pH-dependent modulation of neuronal excitability or taste sensation.


Assuntos
Neurônios , Prótons , Humanos , Membrana Celular , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana , Canais de Cálcio
6.
Eur J Pharmacol ; 927: 175055, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644420

RESUMO

The large-conductance Ca2+-activated K+ channel (BKCa channel) is involved in repolarizing the membrane potential and has a variety of cellular functions. The BKCa channel is highly expressed in bladder smooth muscle and mediates muscle relaxation. Compounds that activate the BKCa channel have therapeutic potential against pathological symptoms associated with the overactivity of bladder smooth muscle. In this regard, we screened a chemical library of 9938 compounds to identify novel BKCa channel activators. A cell-based fluorescence assay identified a structural family of compounds containing a common tricyclic quinazoline ring that activated the BKCa channel. The most potent compound TTQC-1 (7-bromo-N-(3-methylphenyl)-5-oxo-1-thioxo-4,5-dihydro[1,3]thiazolo[3,4-a]quinazoline-3-carboxamide) directly and reversibly activated the macroscopic current of BKCa channels expressed in Xenopus oocytes from both sides of the cellular membrane. TTQC-1 increased the maximum conductance and shifted the half activation voltage to the left. The apparent half-maximal effective concentration and dissociation constant were 2.8 µM and 7.95 µM, respectively. TTQC-1 delayed the kinetics of channel deactivation without affecting channel activation. The activation effects were observed over a wide range of intracellular Ca2+ concentrations and dependent on the co-expression of ß1 and ß4 auxiliary subunits, which are highly expressed in urinary bladder. In the isolated smooth muscle cells of rat urinary bladder, TTQC-1 increased the K+ currents which can be blocked by iberiotoxin. Finally, oral administration of TTQC-1 to hypertensive rats decreased the urination frequency. Therefore, TTQC-1 is a BKCa channel activator with a novel structure that is a potential therapeutic candidate for BKCa channel-related diseases, such as overactive bladder syndrome.


Assuntos
Bexiga Urinária Hiperativa , Animais , Potenciais da Membrana , Relaxamento Muscular , Miócitos de Músculo Liso , Quinazolinas/farmacologia , Ratos , Bexiga Urinária Hiperativa/tratamento farmacológico
7.
J Gen Physiol ; 154(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099502

RESUMO

Despite distinctive functional and anatomic differences, a precise understanding of the cardiac interventricular differences in excitation-contraction (E-C) coupling mechanisms is still lacking. Here, we directly compared rat right and left cardiomyocytes (RVCM and LVCM). Whole-cell patch clamp, the IonOptix system, and fura-2 fluorimetry were used to measure electrical properties (action potential and ionic currents), single-cell contractility, and cytosolic Ca2+ ([Ca2+]i), respectively. Myofilament proteins were analyzed by immunoblotting. RVCM showed significantly shorter action potential duration (APD) and higher density of transient outward K+ current (Ito). However, the triggered [Ca2+]i change (Ca2+ transient) was not different, while the decay rate of the Ca2+ transient was slower in RVCM. Although the relaxation speed was also slower, the sarcomere shortening amplitude (ΔSL) was smaller in RVCM. SERCA activity was ∼60% lower in RVCM, which is partly responsible for the slower decay of the Ca2+ transient. Immunoblot analysis revealed lower expression of the cardiac troponin complex (cTn) in RVCM, implying a smaller Ca2+ buffering capacity (κS), which was proved by in situ analysis. The introduction of these new levels of cTn, Ito, and SERCA into a mathematical model of rat LVCM reproduced the similar Ca2+ transient, slower Ca2+ decay, shorter APD, and smaller ΔSL of RVCM. Taken together, these data show reduced expression of cTn proteins in the RVCM, which provides an explanation for the interventricular difference in the E-C coupling kinetics.


Assuntos
Ventrículos do Coração , Contração Miocárdica , Potenciais de Ação , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Troponina/metabolismo
8.
Tissue Eng Regen Med ; 19(3): 617-628, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34962626

RESUMO

BACKGROUND: Macrophages, with many different phenotypes play a major role during wound healing process, secreting the cytokines crucial to angiogenesis, cell recruitment and ECM remodeling. Therefore, macrophage-derived cytokines may be attractive therapeutic resource for wound healing. METHODS: To obtain a conditioned media (CM) from macrophages, human monocyte THP-1 cells were seeded on TCP or human fibroblast-derived matrix (hFDM) and they were differentiated into M1 or M2 phenotype using distinct protocols. A combination of different substrates and macrophage phenotypes produced M1- and M2-CM or M1-hFDM- and M2-hFDM-CM, respectively. Proteome microarray determines the cytokine contents in those CMs. CMs-treated human dermal fibroblast (hDFB) was analyzed using collagen synthesis and wound scratch assay. Concentrated form of the CM (CCM), obtained by high-speed centrifugation, was administered to a murine full-thickness wound model using alginate patch, where alginate patch was incubated in the M2-CCM overnight at 4 °C before transplantation. On 14 day post-treatment, examination was carried out through H&E and Herovici staining. Keratinocyte and M2 macrophages were also evaluated via immunofluorescence staining. RESULTS: Cytokine analysis of CMs found CCL1, CCL5, and G-CSF, where CCL5 is more dominant. We found increased collagen synthesis and faster wound closure in hDFB treated with M2-CM. Full-thickness wounds treated by M2-hFDM-CCM containing alginate patch showed early wound closure, larger blood vessels, increased mature collagen deposition, enhanced keratinocyte maturation and more M2-macrophage population. CONCLUSION: Our study demonstrated therapeutic potential of the CM derived from M2 macrophages, where the cytokines in the CM may have played an active role for enhanced wound healing.


Assuntos
Macrófagos , Cicatrização , Alginatos , Animais , Colágeno , Meios de Cultivo Condicionados/farmacologia , Citocinas , Camundongos
9.
Mol Cells ; 44(10): 758-769, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34711692

RESUMO

Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.


Assuntos
Canais de Cálcio/metabolismo , Dissulfetos/metabolismo , Homeostase/fisiologia , Glicoproteínas de Membrana/metabolismo , Estrutura Secundária de Proteína/fisiologia , Humanos
10.
Biochem Biophys Res Commun ; 534: 590-596, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199024

RESUMO

Calcium homeostasis modulator 1 (calhm1) proteins form an outwardly rectifying nonselective ion channel having exceedingly slow kinetics and low sensitivity to voltage that is shifted by lowering extracellular Ca2+ ([Ca2+]e). Here we found that physiological temperature dramatically facilitates the voltage-dependent activation of the calhm1 current (Icalhm1); increased amplitude (Q10, 7-15) and fastened speed of activation. Also, the leftward shift of the half-activation voltage (V1/2) was similary observed in the normal and lower [Ca2+]e. Since calhm1 is highly expressed in the brain and taste cells, the thermosensitivity should be considered in their electrophysiology.


Assuntos
Canais de Cálcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Cinética , Glicoproteínas de Membrana/genética , Camundongos , Técnicas de Patch-Clamp , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Papilas Gustativas/metabolismo , Temperatura
11.
J Microbiol Biotechnol ; 24(1): 13-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24064917

RESUMO

Bacillus subtilis JW-1 was isolated from rhizosphere soil as a potential biocontrol agent of bacterial wilt caused by Ralstonia solanacearum. Seed treatment followed by a soil drench application with this strain resulted in >80% reduction in bacterial wilt disease compared with that in the untreated control under greenhouse conditions. The antibacterial compound produced by strain JW-1 was purified by bioactivity-guided fractionation. Based on mass spectroscopy and nuclear magnetic resonance spectral data ((1)H, (13)C, (1)H-(1)H correlation spectroscopies, rotating frame nuclear Overhauser effect spectroscopy, and heteronuclear multiple-bond correlation spectroscopy), the structure of this compound was elucidated as a cyclic lipopeptide composed of a heptapeptide (Gln-Leu-Leu-Val-Asp-Leu-Leu) bonded to a ß-hydroxy-iso-hexadecanoic acid arranged in a lactone ring system.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/metabolismo , Ralstonia solanacearum/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus subtilis/isolamento & purificação , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...